
A Constraint-based Approach to Understanding
the Composition of Skill

Richard L. Lewis (rickl@umich.edu)
Department of Psychology, University of Michigan, Ann Arbor, MI

Alonso H. Vera (avera@arc.nasa.gov)
NASA Ames Research Center, MS 262-3, Moffett Field, CA 94035

Andrew H. Howes (ahowes@cardiff)
School of Psychology, Cardiff University, Cardiff, Wales, UK CF10 3YG

Abstract

A hallmark of human cognition is the ability to com-
pose novel behaviors from an existing repertoire of
skills (Newell, 1990). These compositional processes
range from search-based problem solving to the rapid,
smoothly meshed perceptual-motor coordinations of
well-practiced device interaction. In this paper we de-
scribe an approach to partially automating the compo-
sition of both semi-routine and highly skilled interactive
behaviors. This approach, called Cognitive Constraint
Modeling (CCM), is characterized by three principles:
(a) descriptions of behavior are derived via constraint
satisfaction over explicitly declared architectural, task,
and strategy constraints; (b) the details of behavioral
control (and therefore behavior composition) emerge
in part from optimizing behavior with respect to ob-
jective functions intended to capture general strategic
goals (e.g., go as fast as possible); and (c) the architec-
tural building blocks are based on a simple ontology of
resource-constrained cascaded processes. We show that
these three principles jointly support modeling two im-
portant aspects of an interactive task: the overlapping
and anticipatory behavior of highly skilled performance,
and the hierarchical control of behavior evident earlier
in practice. We contrast this approach with comple-
mentary approaches based on modeling the procedural
learning processes themselves.

Introduction
A hallmark of human cognition is the ability to com-
pose novel behaviors from an existing repertoire of
skills (Newell, 1990). These compositional processes
range from search-based problem solving to the rapid,
smoothly meshed perceptual-motor coordination of well-
practiced device interaction. In this paper we describe
an approach to predicting the composition of both semi-
routine and highly skilled interactive behaviors.

The a priori prediction of performance time and accu-
racy is difficult because human performance depends on
many complex, interacting constraints that derive both
from the task environment and from the constraints on
the human cognitive, perceptual, and motor processing
architecture. Skilled performance of a routine task usu-
ally involves the execution of a number of parallel but
interdependent streams of activity. For example, one
hand may move to a mouse, while the other finishes typ-
ing a word; the eyes track a target while a command
label is retrieved from long-term memory. The details of
how these cognitive, perceptual and motor processes are
scheduled and the nature of their dependencies have sig-
nificant consequences for the overall time requirement

and error rate. Unfortunately, there are currently no
modeling approaches that yield a priori prediction of
human performance on semi-routine tasks that do not
require the modeler to either go through complex simu-
lations of the learning process or to hand-code the intri-
cate sequencing of every type of action that comprises
the behavior. In the next section, we briefly sketch the
requirements for an effective modeling approach.

Requirements for compositional modeling

Effective tools for modeling semi-routine behavior must
support at least the following features: (a) reuse of ex-
isting composed tasks; (b) automatic composition; (c)
parametric flexibility; and (d) easy manipulation and
inspection of theoretical/task assumptions. We discuss
each of these in turn, summarizing the technical chal-
lenge associated with each.
Compositional reuse and specification One ap-
proach to modeling composition is with template mod-
eling. Templates corresponding to common interactive
behaviors such as using a mouse-driven pull-down menu
can be reused without specifying again all of their inter-
nal details. Programmable cognitive architectures such
as ACT-R (Anderson & Lebiere, 1998), Soar (Newell,
1990; Laird, Newell, & Rosenbloom, 1987) and Epic
(Meyer & Kieras, 1997) provide considerable reuse of
architectural-level components, but relatively little sup-
port for the flexible recombination of existing strate-
gies at the task level. There are two key reasons for
this. First, there are often theoretically irrelevant in-
compatibilities in existing task models that prevent their
straightforward reuse and composition into new tasks.
Second, architectural approaches lack an explicit theory
of task-level behavior composition to guide the modeler
in composing new tasks from existing parts—the compo-
sition theory is implicit in the architecture and learning
theory.
Encapsulation The principal advantage of compos-
ing new behaviors out of existing subcomponents is the
ability to work at higher levels of abstraction without
worrying about the details of how to achieve the com-
ponent tasks. Unfortunately, this is difficult to capture
in models of skilled human behavior. Consider the fol-
lowing simple example: Suppose we want to compose
two behaviors A and B in sequence. Behavior A might
be a keyboard button press, and behavior B might be



Table 1: The four technical principles.

P1 Cognitive modeling proceeds by deriving descriptions of behaviors from (possibly underspeci-
fied) declarative statements of architectural, strategic, and task constraints. These constraints
are an explicit, formal statement of the psychological theory.

P2 Models are based on an ontology of cascading, communicating processes in which the resource
consumption of both processes and their communication channels can be reasoned about.

P3 The modeler does not specify all of the control details; rather, details of behaviors are fixed
by optimizing algorithms that maximize or minimize objective functions (such as total time
of behavior) specified by theorist. This embodies the hypothesis that skilled behavior is the
optimal solution to a constraint satisfaction problem.

P4 Explicit goal hierarchies provide (a) the compositional glue for specifying new tasks; (b) the
structure over which learning parameters are specified, and (c) the cognitive control structure
that organizes the model’s behavior.

a mouse-and-click. It is insufficient to specify a serial
order on the two behaviors, expand them into their de-
tailed subcomponents, and then impose that ordering
constraint on the subcomponents. Human skilled be-
havior is not so neatly encapsulated—for example, the
eye-movements associated with the mouse-movement of
behavior B might begin as early as the start of behavior
A. What is specified as serial at a high level might be
executed with substantial parallelism at the lower lev-
els, and this can have significant implications for overall
performance time and accuracy.

In short, the problem is the seamlessness of human
behavior. To first approximation, skilled human behav-
ior does not respect task boundaries—certainly not the
potentially arbitrary boundaries introduced by a mod-
eling decomposition. In particular, anticipatory acts, in
which aspects of a later behavior intrude on or modulate
an earlier one, are a hallmark of high degrees of skill, and
can be seen in behaviors ranging from coarticulation in
speech to aggressive eye-movements in computer interac-
tion. The result is that it is not possible to be concerned
only with the “inputs” and “outputs” and temporal rela-
tionships of component behaviors—the internal details,
and how they mesh, do matter.

Parametric flexibility As explained above, most re-
alistic task scenarios require a mix of skilled and novel
components. The modeling approach must therefore
support flexibility in specifying the degree of learning of
subcomponents of the overall task. Current approaches
permit either programming only at a fixed skill level
(e.g., Epic), or use implemented learning mechanisms,
such as production compilation, to simulate the pro-
gression through various stages of learning (ACT-R).
Although this approach has significant theoretical ad-
vantages by providing explanatory accounts, in practice
it makes modeling difficult, and it becomes especially
cumbersome when the goal is to model mixes of skilled
and novel components within a single task. It also puts
the specific learning mechanisms, which themselves are
evolving hypotheses, on the critical path.

Easy manipulation of theory and task specifica-
tion Architectural assumptions should be as explicit,
inspectable, and modifiable as task specifications. This
is important for both the applied HCI practitioner and
the cognitive scientist.

Unfortunately, cognitive architectures embody archi-
tectural assumptions in underlying program code, and
are not easy to change. This would not be a problem
if the details of an architectural theory were stable and
comprehensive enough to be applied to a wide range of
tasks. But in the immediate future many modelers will
find it valuable to easily manipulate and add architec-
tural assumptions. Examples of such assumptions may
range from relatively low level commitments such as the
distributions of times for specific kinds of perceptual pro-
cesses, to constraints on short term memory retention of
specific kinds of task information, to major architectural
choice points such as the existence of a central response
selection bottleneck.

Addressing the requirements
In the remainder of this paper we describe and illustrate
a modeling approach characterized by the three prin-
ciples of Cognitive Constraint Modeling (CCM) and a
fourth principle of composition (Vera, Howes, McCurdy,
& Lewis, 2004). Table 1 summarizes these principles.
The first principle defines the nature of the cognitive
modeling infrastructure; the remaining principles consti-
tute a set of hypotheses about the nature of the human
cognitive architecture. In the next sections we explain
these principles, and how they address the significant
modeling issues above, by demonstrating them in a pro-
totype modeling tool. We also briefly summarize new
empirical evidence for the psychological reality of hier-
archies in controlling behavior.

Deriving behavior descriptions from constraints
Constraints on behavior can be specified in terms of
predicate calculus statements relating entities in the en-
vironment, tasks, and psychological processes. An entity
can be represented as a set of elements where each el-
ement is an ordered attribute-value pair. For example,
the following asserts that there exists a cognitive process



called initclick with a start time and a duration:

∃Pi : {(isa, process), (name, initclick), (resource, cog),

(start, Si), (duration,Di)} ⊂ Pi (1)

Each pair in the above statement consists of an at-
tribute and a value. Further features may complete the
specification of this process (see Howes et al. submitted
for a full description). Relationships between the start
times and durations of processes can be represented with
simple integer-arithmetic inequalities. For example, the
following represents the assumption that a motor process
is a necessary consequence of an initialization process,
that a motor process must start before the end of its
initialization process, and that the maximum temporal
gap between the two processes is 300ms:

∀Pj : {(isa, process), (name, initclick),

(start, Sj), (duration,Dj)} ⊂ Pj ⇒
∃Pi : {(isa, process), (name, click), (start, Si)} ⊂ Pi

∧ Sj + Dj ≤ Si ∧ Si − (Sj + Dj) ≤ 300 (2)

In addition to representing theoretical assumptions
about the human cognitive architecture, statements of
this form can encode assumptions about the task envi-
ronment, about instruction taking, and about the strate-
gies that people deploy.

It is important to note that universally quantified con-
straints specified in a predicate calculus are not pro-
duction rules. The constraints may to possess a similar
surface form to production rules but the semantics are
very different. Production rules are procedural represen-
tations of knowledge and skill activated in accordance
with the control structure of a cognitive architecture. In
contrast, constraints such as (2) above are declarative
statements of theory. They are not elements of a pro-
cedure that generates the behavioral description. The
constraint must hold for every circumstance where its
antecedent is met. The generation of a model with these
constraints is entirely monotonic and the order of ex-
pansion of elements of the behavior description can be
(and often is) different from the actual predicted order
of behavior.

A cascade-based process ontology The primitives
of CCM models are cascaded processes. Rather than one
process following the next, as in discrete-stage theories,
processes overlap in time (McClelland, 1979). We as-
sume that two processes must overlap in time to permit
information to pass between them. If the processes are
temporally separated, there must be some buffering pro-
cess between them. Figure 1 illustrates this setup: two
processes Pi and Pj communicate via a buffer process
Pk. The temporal overlaps indicated by m and n ensure
that the information pipeline is intact. We have formal-
ized this basic 3-process relationship via a small set of
arithmetic constraints, which serve as axioms that define
an information processing ontology. This cascade-based
ontology has important implications for the ability of
CCM to systematically support behavior composition.

Pi

Pk

Pj

m

n

Figure 1: Two processes joined in cascade. See text for
a formal specification.

Optimal constraint satisfaction Simon (1992) em-
phasizes the need for cognitive scientists to uncover op-
timal solutions given constraints on task environment,
strategies, knowledge and human cognitive architecture.
Given these constraints, it is possible to generate a pre-
diction of optimal performance (Vera et al., 2004). First,
the implications of the theory are derived; these implica-
tions take the form of constraints on a set of processes.
Subsequently, using a constraint satisfaction engine (we
presently use the Constraint Logic Programming Finite
Domain engine in Sicstus Prolog), a prediction of the
optimal behavior can be calculated by finding a set of
variable bindings that are consistent with the defined
constraints. A branch-and-bound algorithm is used to
generate a schedule with the greatest utility. The par-
ticular algorithm is irrelevant to the theory, what is im-
portant is the objective function and the fact that its
value can be minimized or maximized. In the examples
reported in this paper the objective is to minimize time.

Example 1: Composing skilled behavior

We have built a prototype modeling tool, called CORE
(Vera et al., 2004), that takes as input a set of mathemat-
ically stated constraints on behavior and outputs a pre-
diction. One of the formats for the output, a behavior-
graph, similar to a CPM-GOMS-like Pert chart, is illus-
trated in Figure 2. The prediction in the figure is for a
pair of move-and-click mouse tasks (one represented in
light gray and the other dark). Each box represents a
process. In the figure, time is represented on the hori-
zontal access and each row represents a different resource
or processor, perception at the top, through cognition,
to motor actions. Note that behaviors associated with
the second mouse click begin before the initiation of the
first mouse click.

Optimization can lead to the generation of surprising
schedules. It can lead to both anticipatory behavior, as
in Figure 2, and to strategic deferment. For example,
Howes, Vera, Lewis, and McCurdy (2004, submitted)
describe how, under certain architectural assumptions,
the minimum-time cost schedule for a dual-task behavior
required the strategic deferment of response retrieval.

This small example illustrates how the automatic
composition of highly skilled behavior can be achieved



Figure 2: Interleaved mouse move-click tasks.Figure 2: Interleaved mouse move-click tasks.

with a combination of optimization and cascaded
information-processes. Cascades prevent cognitively
implausible process orderings that are possible when
the relationships between processes are described in
terms of temporal dependencies, without specifying
the processing resources for communicating between
the processes. (For example, the process ordering
init(x), init(y), click(y), click(x) is legal if
the relationship between an init and a click is specified
as a temporal dependency—but this may not be cogni-
tively plausible because it assumes no cost to buffering
information between the cognitive intention and the mo-
tor action.)

Example 2: Hierarchical composition at
multiple skill levels

But how is behavior organized earlier in practice? We
hypothesized that the hierarchical organization of be-
havior early in practice results in longer response times
at subtask boundaries. Fixed task hierarchies must be
retrieved, one goal at a time, from memory. The re-
trievals that occur at these task boundaries may have
implications not only for response times, but also for the
interleaving of subtasks that is a feature of skilled be-
havior. As described in the introduction, we are aiming
toward a modeling framework that flexibly and easily
spans mixtures of novice and expert behavior.

It is a commonplace of modern cognitive psychology
that much complex human behavior is hierarchically or-
ganized in some way, and there is substantial evidence
for this in domains ranging from language to prob-
lem solving. However, there is no existing compelling
evidence for goal-subgoal structures in routine, non-
problem-solving tasks with relatively fixed goal struc-
tures. Lewis, Vera, and Remington (2004, in prepara-
tion) set out to obtain such evidence, which we briefly
describe next.

Empirical evidence for hierarchical control struc-
tures Using a simulation of an Automated Teller Ma-
chine (ATM), Lewis et al. (2004, in preparation) de-
signed a set of studies to analyze the effects of task hi-
erarchy on the acquisition of skill. They hypothesized
that, for example, participants who were told that they
must enter a 4-digit PIN in order to access all of their
accounts and that they must then enter the specific ac-
count number for the desired transaction (e.g., with-
drawal from checking versus savings) would form a dif-
ferent task representation than those told to enter their
PIN and account number together in order to access all
of the functions. The sequence of numbers in each case
could be exactly the same, yet because of a potentially
different hierarchical representation, there should be a
longer pause between the two numbers in one case than
the other.

Fifteen University of Michigan undergraduate stu-
dents participated in the study. The ATM simulation
interface, had five elements: a numeric keypad, func-
tion buttons to each sided of the numeric keypad (e.g.
“OK”, “Cancel”), a display screen, buttons at the sides
of the screen and two slots (one for inserting the card
and the other for retrieving money/receipt). The entire
task was mouse-driven, including clicking on the card
and money/receipt slots. Each subject performed the
same task 100 times. Subjects were instructed on the
interface and given a set of of actions to perform: enter
card, enter PIN, enter account, enter amount, etc.

As shown in Figure 3, there is evidence for a multi-
tiered hierarchical representation of the task through the
first 100 trials of performance. The data were analysed
according to transitions corresponding to a three-level
hierarchy traversal (e.g., from enter PIN to enter ac-
count), a two-level traversal, and a one-level traversal.
All of these transitions were experimentally controlled
for Fitt’s law variance. Figure 3 shows a clear differ-
entiation for each type of transition. Actions requir-
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Figure 3: Reaction times for button presses in a simulated ATM banking task. Buttons are grouped according to
the size of the transition required in the task hierarchy (Lewis, Vera, & Remington, in preparation).

ing three-level transitions took 200–400ms longer over
the 100 trials than mouse clicks requiring only two-level
transitions. Similarly, the difference between two-level
an one-level traversals was on the order of 100–200ms.
Two additional interesting effects are that the curves be-
gin to converge but do not fully overlap late in practice
(the three-level traversal curve remains 50-100ms above
the other two) and that the one-level traversal curve re-
mains relatively flat throughout (i.e., participants start
out fast on those transitions and remain fast).

A model of hierarchical control and learning We
specified a CCM model of Lewis et al.’s data focusing
on the effect of hierarchy on inter-mouse-click latencies.
Two constraints were of particular importance:

1. There is a time cost to retrieving subtasks from mem-
ory. The average time cost of retrieving a single sub-
task is fixed but the traversal of multiple layers of the
hierarchy requires multiple retrievals. More retrievals
therefore require more time.

2. Learning consists of incrementally removing interme-
diate layers in the task hierarchy from bottom to top.
This assumption reflects the idea that subtasks are
chunked together into more specialized and efficient
(in terms of memory and time costs) procedures.

Figure 4 shows the model’s predicted behavior for
novice performance. This behavior graph is an opti-
mal solution that was derived using CORE from a set
of mathematically specified constraints. Time is repre-
sented from left to right. For now, we are not mod-
eling the perceptual processing required to achieve the
task. Therefore the cognitive processing consists of the
retrieval of task information and the initiation (transmit)
of motor responses.

Above the cognitive processor in the figure are the
buffers that represent the goal information. At the top is
the top level task (do banking), it is predicted to occupy
the buffer for at least as long as is required to cue the re-
trieval of its two subtasks type_pin and type_account.
Each of type_pin and type_account cue the retrieval
of further subtasks. Eventually the correct sequence of
motor responses is retrieval and initiated. Most impor-
tantly for our current purposes, the contiguous retrieval
of task r61 and its first subtask r77 results in a longer
latency between r111 and r112 than between r110 and
r111. I.e., consistent with the human data, the model
predicts longer latencies at subtask boundaries.

Figure 5 illustrates the model’s predicted behavior for
expert performance. The behavior graph has been gen-
erated from task knowledge that was derived from the
specified novice task knowledge using a set of five uni-
versally quantified predicate calculus statements. The
statements encode a theory of how procedures are com-
posed with practice. They specify how to infer the struc-
ture of an expert task hierarchy from a given novice task
hierarchy and how to ensure that the task ordering is
maintained once the control information provided by the
hierarchy has been removed. In Figure 5 the hierarchy
has been replaced by a buffer (represented below cogni-
tion) that connects the transmit processes. This buffer
represents a working memory for control state informa-
tion.

Discussion
We have described the application of a tool for making
inferences about the implications of formally specified
theories of behavior to the problem of understanding the
composition of skill. The tool uses a constraint logic-
programming environment to support inference given a
specification of the constraints on the task environment,



Figure 4: Prediction of novice performance on the ATM task. There is a greater duration between click r111 and
r112 than between r110 and r111 because of the time required to retrieve the type-account subtask.

on perception, on cognition, and on action.
A particular model constructed with the tool was used

to illustrate the way in which composition can be under-
stood as incremental replacement of layers in the task hi-
erarchy with process chaining. The behavior predicted
by the model was consistent with human performance
on a simulated ATM task. Most importantly, predicted
inter-move latency corresponded to the task boundaries.

More generally, the framework and model begin to ad-
dress the requirements for compositional modeling that
we articulated in the introduction: (a) existing com-
posed tasks were reused while avoiding the restricted-
interleaving associated with encapsulation (Example 1);
(b) automatic composition was achieved by separating
constraints from scheduling and then using an optimal
scheduling algorithm to predict the optimal behavior
given constraints on task environment and strategy and
architecture (see Simon, 1992); (c) parametric flexibil-
ity was achieved by specifying the declarative relation-
ship between task knowledge structures at different lev-
els of skill, rather than by simulating the incremental
transitions of the human cognitive learning algorithm;
(d) specifying constraints on cascading information pro-
cesses in terms of mathematical relationships between
their start times and durations supported rapid specifi-
cation and manipulation of theory (only five rules were
required to articulate a simple theory of skill composi-
tion).
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